Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 26(2): 311-325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37400666

RESUMO

Glioblastoma (GBM) constitutes the most common primary brain tumor in adults. The challenges in GBM therapeutics have shed light on zebrafish used as a promising animal model for preclinical GBM xenograft studies without a standardized methodology. This systematic review aims to summarize the advances in zebrafish GBM xenografting, compare research protocols to pinpoint advantages and underlying limitations, and designate the predominant xenografting parameters. Based on the PRISMA checklist, we systematically searched PubMed, Scopus, and ZFIN using the keywords "glioblastoma," "xenotransplantation," and "zebrafish" for papers published from 2005 to 2022, available in English. 46 articles meeting the review criteria were examined for the zebrafish strain, cancer cell line, cell labeling technique, injected cell number, time and site of injection, and maintenance temperature. Our review designated that AB wild-type zebrafish, Casper transparent mutants, transgenic Tg(fli1:EGFP), or crossbreeding of these predominate among the zebrafish strains. Orthotopic transplantation is more commonly employed. A number of 50-100 cells injected at 48 h post-fertilization in high density and low infusion volume is considered as an effective xenografting approach. U87 cells are used for GBM angiogenesis studies, U251 for GBM proliferation studies, and patient-derived xenograft (PDX) to achieve clinical relevance. Gradual acclimatization to 32-33 °C can partly address the temperature differential between the zebrafish and the GBM cells. Zebrafish xenograft models constitute valuable tools for preclinical studies with clinical relevance regarding PDX. The GBM xenografting research requires modification based on the objective of each research team. Automation and further optimization of the protocol parameters could scale up the anticancer drug trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Glioblastoma/patologia , Transplante Heterólogo , Peixe-Zebra , Xenoenxertos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Modelos Animais de Doenças
2.
Sci Rep ; 11(1): 13940, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230583

RESUMO

The Hedgehog (Hh)/Gli signaling pathway controls cell proliferation and differentiation, is critical for the development of nearly every tissue and organ in vertebrates and is also involved in tumorigenesis. In this study, we characterize the oncoprotein SET/I2PP2A as a novel regulator of Hh signaling. Our previous work has shown that the zebrafish homologs of SET are expressed during early development and localized in the ciliated organs. In the present work, we show that CRISPR/Cas9-mediated knockdown of setb gene in zebrafish embryos resulted in cyclopia, a characteristic patterning defect previously reported in Hh mutants. Consistent with these findings, targeting setb gene using CRISPR/Cas9 or a setb morpholino, reduced Gli1-dependent mCherry expression in the Hedgehog reporter zebrafish line Tg(12xGliBS:mCherry-NLS). Likewise, SET loss of function by means of pharmacological inhibition and gene knockdown prevented the increase of Gli1 expression in mammalian cells in vitro. Conversely, overexpression of SET resulted in an increase of the expression of a Gli-dependent luciferase reporter, an effect likely attributable to the relief of the Sufu-mediated inhibition of Gli1. Collectively, our data support the involvement of SET in Gli1-mediated transcription and suggest the oncoprotein SET/I2PP2A as a new modulator of Hedgehog signaling.


Assuntos
Proteínas Hedgehog/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteína GLI1 em Dedos de Zinco/genética , Animais , Sistemas CRISPR-Cas/genética , Embrião não Mamífero/metabolismo , Células HEK293 , Humanos , Camundongos , Morfolinos/farmacologia , Células NIH 3T3 , Receptores de Superfície Celular/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
3.
Molecules ; 24(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671694

RESUMO

Mastic essential oil exhibits anti-bacterial, anti-inflammatory, and anti-oxidant properties. With the growing interest of the use of mastic oil in the food and pharmaceutical industry, systematic in vivo studies are needed to address controlled usage and safety issues. In the present work we evaluated the safety of mastic oil using as a model the zebrafish lateral line system. In addition, we studied the gene expression profile of zebrafish fed with mastic oil-supplemented diet using microarray analysis. Our results showed that the hair cells of lateral line neuromasts are functional upon exposure of zebrafish larvae up to 20 ppm of mastic essential oil, while treatment with higher concentrations, 100 and 200 ppm, resulted in increased larvae mortality. Dietary supplementation of zebrafish with mastic essential oil led to differential expression of interferon response-related genes as well as the immune responsive gene 1 (irg1) that links cellular metabolism with immune defense. Notably, mucin 5.2, a constituent of the mucus hydrogel that protects the host against invading pathogens, was up-regulated. Our in vivo work provides information concerning the safety of mastic essential oil use and suggests dietary effects on gene expression related with the physical and immunochemical properties of the gastrointestinal system.


Assuntos
Perfilação da Expressão Gênica , Sistema da Linha Lateral/efeitos dos fármacos , Óleos Voláteis/farmacologia , Pistacia/química , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Reprodutibilidade dos Testes
4.
Int J Mol Sci ; 18(2)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208772

RESUMO

Microcystins are cyclic heptapeptides that constitute a diverse group of toxins produced by cyanobacteria. One of the most toxic variants of this family is microcystin-LR (MCLR) which is a potent inhibitor of protein phosphatase 2A (PP2A) and induces cytoskeleton alterations. In this study, zebrafish larvae exposed to 500 µg/L of MCLR for four days exhibited a 40% reduction of PP2A activity compared to the controls, indicating early effects of the toxin. Gene expression profiling of the MCLR-exposed larvae using microarray analysis revealed that keratin 96 (krt96) was the most downregulated gene, consistent with the well-documented effects of MCLR on cytoskeleton structure. In addition, our analysis revealed upregulation in all genes encoding for the enzymes of the retinal visual cycle, including rpe65a (retinal pigment epithelium-specific protein 65a), which is critical for the larval vision. Quantitative real-time PCR (qPCR) analysis confirmed the microarray data, showing that rpe65a was significantly upregulated at 50 µg/L and 500 µg/L MCLR in a dose-dependent manner. Consistent with the microarray data, MCLR-treated larvae displayed behavioral alterations such as weakening response to the sudden darkness and hypoactivity in the dark. Our work reveals new molecular targets for MCLR and provides further insights into the molecular mechanisms of MCLR toxicity during early development.


Assuntos
Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Microcistinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Peixe-Zebra/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Toxinas Marinhas , Fosforilação , Proteína Fosfatase 2/metabolismo
5.
Biochem J ; 473(24): 4609-4627, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27754889

RESUMO

The oncoprotein SET/I2PP2A (protein phosphatase 2A inhibitor 2) participates in various cellular mechanisms such as transcription, cell cycle regulation and cell migration. SET is also an inhibitor of the serine/threonine phosphatase PP2A, which is involved in the regulation of cell homeostasis. In zebrafish, there are two paralogous set genes that encode Seta (269 amino acids) and Setb (275 amino acids) proteins which share 94% identity. We show here that seta and setb are similarly expressed in the eye, the otic vesicle, the brain and the lateral line system, as indicated by in situ hybridization labeling. Whole-mount immunofluorescence analysis revealed the expression of Seta/b proteins in the eye retina, the olfactory pit and the lateral line neuromasts. Loss-of-function studies using antisense morpholino oligonucleotides targeting both seta and setb genes (MOab) resulted in increased apoptosis, reduced cell proliferation and morphological defects. The morphant phenotypes were partially rescued when MOab was co-injected with human SET mRNA. Knockdown of setb with a transcription-blocking morpholino oligonucleotide (MOb) resulted in phenotypic defects comparable with those induced by setb gRNA (guide RNA)/Cas9 [CRISPR (clustered regularly interspaced short palindromic repeats)-associated 9] injections. In vivo labeling of hair cells showed a significantly decreased number of neuromasts in MOab-, MOb- and gRNA/Cas9-injected embryos. Microarray analysis of MOab morphant transcriptome revealed differential expression in gene networks controlling transcription in the sensory organs, including the eye retina, the ear and the lateral line. Collectively, our results suggest that seta and setb are required during embryogenesis and play roles in the zebrafish sensory system development.


Assuntos
Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião não Mamífero/metabolismo , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...